authors for A = 21(1)25. (See Review 9, Math. Comp., v. 15, 1961, p. 88–89.) The format and precision of those tables (four decimal places) is retained in this addendum.

J. W. W.

21 [K].-COLIN R. BLYTH & DAVID W. HUTCHINSON, Tables of Neyman Shortest Unbiased Confidence Intervals (a) for the Binomial Parameter (b) for the Poisson Parameter, (reproduced from Biometrika, v. 47, p. 381-391, v. 48, p. 191-194, respectively) University Press, London, 1960, 16 p., 28 cm. Price 2s. 6d.

Anscombe [1] observed that exact confidence intervals for a parameter in the distribution function of a discrete random variable could be obtained by adding to the sample value, X, of the discrete variable a randomly drawn value, Y, from the rectangular distribution on (0, 1). Eudey [2] has applied this idea in the case of the binomial parameter, p, to find the Neyman shortest unbiased confidence set. The present authors use Eudey's equations for a uniformly most powerful level 1- α test of $p = p^*$ vs $p \neq p^*$ based on an X in a sample of n, which give the acceptance interval $a(p^*)$ determined by a value of Y in the form $n_0 + \gamma_0 \leq X + \gamma_0$ $Y \leq n_1 + \gamma_1$ in which n_0 and n_1 are integers and $0 \leq \gamma_0 \leq 1, 0 \leq \gamma_1 \leq 1$. These are solved for γ_0 and γ_1 in terms of n_0 and n_1 and the given X, n, and α . Then trial values of n_0 and n_1 are used until the resulting γ_0 and γ_1 are both on (0, 1). The computation was carried out on the University of Illinois Digital Computer Laboratory's ILLIAC. The program used for arbitrary n, α prints out $n_0 + \gamma_0$, $n_1 + \gamma_1$ for any equally spaced set of p^* values. From these the Neyman shortest unbiased α -confidence set for $p, X + Y \epsilon \alpha(p^*)$ can be read off to 2D. The tables give such 95% and 99% confidence intervals for p to 2D for n = 2(1)24(2)50 and X + Y =0(.1)5.5 for $n \leq 10, 0(.1)1(.2)10$ for $11 \leq n \leq 19, 0(.1)1(.2)6(.5)15(1)17$ for $20 \le n \le 32$, and 0(.2)2(.5)23(1)26 for $34 \le n \le 50$. For n, X + Y not tabled, one enters the table at n, n + 1 - (X + Y) and takes the reflection about p = $\frac{1}{2}$ of the interval given.

Similar confidence intervals for the Poisson parameter, λ , were found by the same method. The table gives Neyman shortest unbiased 95% confidence intervals for λ to 1D for X + Y = .01(.01).1(.02).2(.05)1(.1)10(.2)40(.5)55(1)59 and to the nearest integer for X + Y = 60(1)250. For the same values of X + Y, 99% confidence intervals are given to 1D for $X + Y \leq 54$ and to the nearest integer for X + Y > 54.

C. C. CRAIG

The University of Michigan Ann Arbor, Michigan

1. F. J. ANSCOMBE, "The validity of comparative experiments," J. Roy Statist. Soc. Ser.

A. v. 111, 1948, p. 181-211.
2. M. W. EUDEY, On the Treatment of a Discontinuous Random Variable, Technical Report No. 13 (1949), Statistical Laboratory, University of California, Berkeley.

22 [L].—M. I. ZHURINA & L. N. KARAMAZINA, Tablifsy funktsii Lezhandra $P_{-1/2+i\tau}(x)$, Tom I (Tables of the Legendre functions $P_{-1/2+i\tau}(x)$, Vol. I), Izdatel'stov Akad. Nauk SSSR, Moscow, 1960, 320 p., 27 cm., 2700 copies. Price 34.50 (now 37.95) rubles.

This important volume belongs to the well-known series of Mathematical Tables of the Academy of Sciences of the USSR, and the tables were computed on the